
Toolbox

Editor’s Note: Toolboxes are intended to briefly highlight and evaluate an emerging approach or a resource that is becoming widely
used in neuroscience. For more information, see http://www.jneurosci.org/misc/itoa.shtml.

Granger Causality Analysis in Neuroscience and
Neuroimaging

Anil K. Seth, Adam B. Barrett, and Lionel Barnett
Sackler Centre for Consciousness Science, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, United Kingdom

Introduction
A key challenge in neuroscience and,
in particular, neuroimaging, is to move
beyond identification of regional activa-
tions toward the characterization of func-
tional circuits underpinning perception,
cognition, behavior, and consciousness.
Granger causality (G-causality) analysis
provides a powerful method for achieving
this, by identifying directed functional
(“causal”) interactions from time-series
data. G-causality implements a statistical,
predictive notion of causality whereby
causes precede, and help predict, their ef-
fects. It is defined in both the time and fre-
quency domains, and it allows for the
conditioning out of common causal influ-
ences. In this paper we explain the theoretical
basis and computational implementation of
G-causality analysis in neuroimaging and,
more broadly, in neurophysiology, noting
bothitsexcitingpotentialandtheassumptions
that govern its application and interpretation.

Concepts of brain connectivity are be-
coming increasingly prevalent as neuro-
scientists seek to unravel the detailed
circuitry underlying perception, cogni-
tion, and behavior. Efforts to characterize
structural connectivity—the brain’s “con-
nectome”—through anatomical methods

are now complemented by an intense fo-
cus on “functional” and “effective” con-
nectivity, through statistical analysis of
neural signals. The distinction between
functional and effective connectivity is
crucial when implementing and inter-
preting these analyses, but it remains
sometimes misunderstood. In a nutshell,
functional connectivity aims at describing
the statistical dependencies between two
or more variables, where these dependen-
cies can be undirected (as in correlation or
coherence) or directed (as in G-causality
and “transfer entropy;” Granger, 1969;
Schreiber, 2000). Being descriptions of
data, functional connectivity analyses
make minimal assumptions about the un-
derlying (physical) mechanisms. In con-
trast, effective connectivity analyses aim
to find the simplest possible circuit dia-
gram explaining observed responses
(Friston et al., 2013) and work in general
by comparing how well distinct mecha-
nistic models perform in accounting for
observed data. In neuroscience this ap-
proach is exemplified by dynamic causal
modeling (DCM; Friston et al., 2003),
which applies a Bayesian framework to
assess model performance. The distinc-
tion between effective and functional
connectivity clarifies why methods like
G-causality and DCM are complementary
rather than competitive—they make dif-
ferent assumptions, and they permit dif-
ferent interpretations (Friston et al.,
2013). Here, we provide a brief intro-
duction to G-causality, explaining its
theoretical basis, computational strat-
egy, and the possibilities and limitations

that arise in neuroscience and neuroim-
aging applications.

G-causality analysis
G-causality is based on the simple idea that
causes both precede and help predict their
effects. This idea can be traced to at least
Norbert Wiener and was operationalized
by the econometrician Clive Granger
(Granger, 1969) in terms of linear vector au-
toregressive (VAR) models of stochastic time-
series data, with important generalizations
later provided by John Geweke (Geweke,
1982). VAR models are simple mathemat-
ical models in which the value of a variable
at a particular time is modeled as a (linear)
weighted sum of its own past (usually over
a number of discrete time-steps), and of
the past of a set of other variables. Each
variable is a vector stochastic process rep-
resenting a time series. Fitting a VAR
model amounts to finding the optimal
weights so that estimation errors are min-
imized; many standard techniques exist
for doing this. In this setting, G-causality
says that a variable X “G-causes” another
variable Y if the past of X contains infor-
mation that helps predict the future of Y,
over and above the information already in
the past of Y itself (and in the past of other
“conditioning” variables Z). In general
terms, when this condition is satisfied one
can say that there is “information flow”
from X to Y. This is justified because
G-causality is an approximation to trans-
fer entropy (the approximation is exact
for Gaussian variables), which is a di-
rected version of Shannon’s mutual infor-
mation, which in turn is a very general
way of characterizing the statistical de-
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pendency or shared information between
two variables (Barnett et al., 2009).

In practice, the computational strategy
for implementing G-causality analysis
(GCA) rests on estimating and comparing
two VAR models, given a set of time-series
data. Assume we have 3 variables: X, Y,
and Z, and are interested in measuring in-
formation flow from X to Y. First, a “full”
VAR model is estimated jointly for all the
variables. This leads to a particular predic-
tion/estimation error for each variable
within the set. A second “reduced” VAR
model is then estimated, which omits the
potential cause (X, in the example above).
This leads to a second set of prediction
errors for each remaining variable. If the
prediction error for Y is significantly
smaller for the full regression (including
X), as compared with the reduced regres-
sion (excluding X), then we say that X
G-causes Y, conditioned on Z. (Note that
we also have, from the same models, the
G-causality from X to Z conditioned on
Y). Technically, the magnitude of the
G-causality is given by the ratio of the
variance of the prediction-error terms for
the reduced and full regressions. If the
data are Gaussian (i.e., normally distrib-
uted) the equivalence with transfer en-
tropy (Barnett et al., 2009) means that
G-causality magnitudes can be inter-
preted in terms of information-theoretic
bits-per-unit-time.

Since G-causality rests on comparisons
of model error, it only makes sense in sit-
uations where variables can be modeled as
having random variations—i.e., as sto-
chastic. Another important assumption,
at least standardly, is that the data are
(weakly) stationary, which means that the
means and variances of the variables are
stable over time. Given these assump-
tions, G-causality has several attractive
properties (Geweke, 1982; Barnett and
Seth, 2014). First, it is easy to compute
since there are several standard algo-
rithms for optimal estimation of (linear)
VAR models (e.g., ordinary least squares,
Levinson–Wiggs–Robinson equations).
Second, since VAR models are very gen-
eral, there is no need to make a priori as-
sumptions about the underlying physical
mechanisms, other than that they gener-
ate data suitable for VAR modeling.
Third, the G-causality statistic follows
(asymptotically) a � 2 distribution, so for
large sample sizes one can perform statis-
tical significance testing without recourse
to permutation or bootstrapping methods.
Fourth, VAR models can be easily trans-
formed into the frequency domain, allow-
ing spectral (“band-limited”) estimations of

G-causality (though here surrogate meth-
ods are needed to test statistical signifi-
cance). Finally, G-causality is invariant
under rescaling of variables, meaning that it
is unaffected by overall signal strength. Alto-
gether, G-causality offers a simple yet pow-
erful means for characterizing information
flow within a network of variables, in both
time and frequency domains, while making
minimal assumptions about the underlying
generative mechanisms. We note, but do
not discuss here, that G-causality is closely
related to other data-driven methods in-
cluding partial directed coherence and the
directed transfer function (Florin et al.,
2011). Nonparametric implementations of
G-causality are also possible (Dhamala et
al., 2008).

Although GCA, like most statistical anal-
yses, usually requires adaptation to each
specific application, a general approach can
be identified. This approach is based on the
freely available multivariate Granger causal-
ity analysis (MVGC) MATLAB (Math-
Works) toolbox, which was designed for
applications in neuroscience (Barnett and
Seth, 2014). The process starts with the
recording of time-series data, either dur-
ing steady-state conditions or while a task
is being performed. These data are then
checked for stationarity via standard tech-
niques. If the data are initially nonstation-
ary, a range of preprocessing steps can be
considered. Drifts and slow fluctuations
can be removed by detrending (linear or
piecewise), differencing, and/or high-pass
filtering. [Filters should be chosen to have
a low model order, to minimize difficul-
ties in VAR model fitting (Barnett and
Seth, 2014).] Oscillatory nonstationary
features like electrical line noise can be re-
moved by notch filtering or other meth-
ods. The data can also be windowed into
shorter, possibly more stationary, epochs:
given sufficient data, this method can
shed light on time-varying G-causality
(Ding et al., 2000). Finally, analysis can
focus on limited data segments where sta-
tionarity applies. Whereas in most neuro-
science contexts some combination of
these steps will suffice, if nonstationarities
persist, other more sophisticated ap-
proaches will be needed (Hesse et al.,
2003; also see below, Interpretations, lim-
itations, and emerging directions).

Next, full and reduced VAR models are
estimated (note that the MVGC toolbox is
able to extract full and reduced VAR
model coefficients from a single full
model, avoiding a source of bias). This
process requires estimation of model or-
der—i.e., the number of past observations
(time-steps) to be included in the VAR

models. Excessively high (low) model or-
ders will lead to overfitting (underfitting)
of the data. Again, standard techniques
exist for estimating an optimal model or-
der, which are based on balancing model
complexity (broadly, number of parame-
ters) against error. It is worth noting that
model order estimation is constrained by
the data, not by the underlying physical
mechanism. Thus, data obtained with a
low sampling rate (e.g., fMRI data) will
typically be associated with low model or-
ders (1 or 2 at most). Similarly, fast-
sampled data (e.g., EEG) may require prior
downsampling to achieve an appropriate
balance between model complexity and the
time span covered by a VAR model (e.g., a
model order of 25 at 250 Hz covers a time
scale of 100 ms). Finally, G-causality values
can be computed and checked for statistical
significance, either by comparison against
standard analytic distributions (time do-
main) or via surrogate statistics (frequency
domain).

The interpretation of G-causality nat-
urally rests on the experimental design. In
general, GCA is better suited to revealing
differences in directed functional connec-
tivity between experimental conditions than
to characterizing these connectivity patterns
per se. Another powerful approach is to
correlate trial-by-trial differences in behav-
ioral variables (e.g., response times) with
G-causality values (Wen et al., 2012). Given
the need for stationarity, steady-state or pre-
stimulus periods may be more suitable for
GCA than complex time-varying induced
or evoked signals.

G-causality in neuroimaging
and neurophysiology
A popular setting for GCA in neurosci-
ence is in functional neuroimaging, where
there is an increasing appetite to move
beyond the identification of regional acti-
vations toward the characterization of
functional circuits (Friston et al., 2013).
The common neuroimaging modalities,
fMRI, MEG/EEG, and electrocorticography
(ECoG), each offer distinctive opportunities
and limitations. GCA of intracranially re-
corded electrophysiological data like local
field potentials and intracranial EEG
(iEEG) follows the same principles as for
EEG and MEG, but without reference to
the indirect nature of “sensor space” data.
A selection of landmark empirical and
theoretical developments in GCA for neu-
roscience and neuroimaging is given in
Figure 1.
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G-causality of magneto/electrophysiological
data
Data obtained from electrical or magnetic
recordings of continuous neural activity
are well suited to GCA in virtue of having
high temporal resolution. For steady-state
data the primary consideration is to ensure
stationarity. As mentioned, this may require
detrending, differencing, windowing, and/or
filtering. Importantly, as explained below,
(temporal) filtering should be used spar-
ingly and only as needed for stationarity
purposes. For event-related or induced
data, nonstationarity is likely to be a com-
mon issue which can be tackled either by
(1) a “vertical” regression in which VAR
models are estimated for very short win-
dows across trials, rather than for each
trial separately, or (2) removing the en-
semble average ERP. The former assumes
that each trial is an independent realiza-
tion of the same underlying stochastic
process; the latter assumes minimal inter-
trial variation in the ERP (Wang et al.,
2008). For analyses in sensor space it can
be useful to apply a spatial filter (e.g., a
surface Laplacian) to spatially decorrelate
the data and ameliorate the effects of vol-
ume conduction (especially relevant for
EEG; Cohen, 2014).

GCA of electrophysiological data of-
fers the important advantage of spectral
analysis; that is, G-causal influences can
be tied to specific frequency bands
(Geweke, 1982). This is very useful when
testing neurophysiological hypotheses
that attribute specific functional roles
for different neural oscillations. For ex-
ample, recent applications to monkey
electrophysiological data have revealed
“top-down” G-causality influences in the
alpha and beta ranges, and “bottom-up”
influences in the gamma range, consistent
with popular predictive processing fram-
eworks (Bressler and Richter, 2014; van Ker-
koerle et al., 2014; Bastos et al., 2015). It is
critical that analyses like these are con-
ducted using band-limited G-causality di-
rectly in the frequency domain (Geweke,
1982; Barnett and Seth, 2014), rather than
prefiltering the data into the desired fre-
quency bands and applying time-domain
G-causality. The reason is that, perhaps
surprisingly, G-causality is theoretically
invariant to (invertible) filtering opera-
tions (Barnett and Seth, 2011). In prac-
tice, GCA of (temporally) filtered data will
produce results different from those for
GCA of unfiltered data; however, the dif-

ferences will reflect sub-optimalities in
VAR model fitting of filtered data and not
the desired band-limited G-causalities. Note
that integrating band-limited G-causality
across all frequencies (up to the Nyquist fre-
quency) should recover the time-domain
G-causality. GCA of related signals such as
ECoG and iEEG data follows the same prin-
ciples, although nonstationarity issues may
manifest differently. Application to spike-
train data derived from single-unit record-
ings requires a different approach recognizing
the point-process nature of such data (Kim et
al., 2011).

G-causality of fMRI data
G-causality analysis of fMRI data has been
highly controversial (David et al., 2008;
Roebroeck et al., 2011), and a detailed
treatment is beyond the current scope. Al-
though fMRI furnishes time-series data
with high spatial precision, the indirect re-
lationship between the fMRI BOLD signal
and the underlying neural mechanisms
pose important challenges for GCA be-
yond those already faced by standard re-
gional or correlational analyses. Two
features are especially problematic: (1) the
sampling rate (repetition time or TR) for
fMRI data is usually very low, of the order

Figure 1. Selected landmarks in the development and application of G-causality for neuroscience and neuroimaging. Blue boxes refer to fMRI studies and green boxes to electrophysiological
studies; red boxes show theoretical/modeling advances. The embedded references are as follows: [1], Bernasconi and König (1999); [2], Ding et al., (2000); [3], Goebel et al. (2003); [4], Brovelli et
al. (2004); [5], Valdés-Sosa et al. (2005); [6], David et al. (2008); [7], Wang et al. (2008); [8], Dhamala et al. (2008); [9], Barnett et al. (2009); [10], Ryali et al. (2011); [11], Wen et al. (2012); [12], Seth
et al. (2013); [13], van Kerkoerle et al. (2014); [14], Bastos et al. (2015).
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of seconds, which is much slower than the
millisecond timescale of the underlying
neuronal responses; and (2) fMRI re-
sponses reflect convolution with an HRF,
which imposes long delays (in terms of
“time-to-peak”) with respect to neural
activity and, even worse, may have signif-
icant inter-regional variability (Handwer-
ker et al., 2012). A typical worrisome sce-
nario might be one in which region X
causally influences region Y at the neuro-
nal level, but the HRF for X has a longer
time-to-peak than the HRF for Y. One
might suspect that GCA of BOLD signals
from X and Y would lead to the incorrect
inference that Y G-causes X as a result of
the confounding hemodynamic delays.
However, this suspicion does not hold up
under scrutiny. In fact, because the HRF
acts as a (slow, moving-average) filter, the
invariance to filtering implies that
G-causality is invariant to HRF variability,
a result now established both theoretically
and in detailed modeling (Seth et al.,
2013). Unfortunately, for this invariance
to apply in practice, the TR must be of the
order of the neuronal delays, which is not
currently feasible, although recent devel-
opments in ultrafast sequences are prom-
ising (Feinberg and Setsompop, 2013).
Also, full invariance requires that the HRF
act as an invertible filter, which may not
always be the case. Even if HRFs do not
vary among regions, GCA of heavily
downsampled and convolved data can
still lead to inflated false negatives and
false positives (Seth et al., 2013). Other
simulations have indicated that a mono-
tonic relationship is preserved between
G-causality at the neural level and
G-causality in simulated BOLD signals
under a broad range of convolution pa-
rameters and sampling rates, at least in bi-
variate situations (Wen et al., 2013). In view
of these results, although GCA is invariant
to HRF variability given sufficiently fast
sampling and low measurement noise, cur-
rent applications of G-causality to fMRI
should be treated cautiously and require care-
fully chosen experimental paradigms (e.g.,
comparison between conditions wherein
HRFs can be assumed to remain unchanged).

Interpretations, limitations, and
emerging directions
Connectivity analyses can be arranged
along a scale from model-free to model-
based. Model-free approaches like mutual
information and transfer entropy impose
the fewest assumptions on the data but—
because of this—are challenging to esti-
mate given limited data. At the other
extreme, methods like dynamic causal

modeling (DCM) specify detailed state-
space models that describe how dynamics
are coupled at the level of underlying
mechanisms (the “state” equation), and
how these dynamics are manifest in observ-
able data (the “observation” equation). By
jointly inverting candidate models and find-
ing the most likely (among a set of compet-
itors), DCM can address claims about
physical-causal mechanisms. GCA occu-
pies a useful middle ground between fully
model-free and highly model-dependent
approaches, where a generic dynamical
model (the VAR process) is combined
with a liberal structural model (i.e., no as-
sumptions are made about the underlying
structural connectivity). Unlike DCM,
GCA can be applied directly to any time-
series to obtain a measure of coupling
among empirically sampled neuronal
systems. Additionally, because fewer pa-
rameters need estimating than for a
comparable DCM, GCA can typically be
applied to larger networks, which is an in-
creasingly important consideration in
neuroscience settings. One useful way to
summarize the relationship between GCA
and DCM is that the former can furnish
“data-driven” hypotheses for subsequent
testing by explicitly specified DCMs. An-
other is to recall that GCA and DCM ask
and answer fundamentally different ques-
tions, so that choosing one or the other
(or both) depends on whether one is in-
terested in describing the data in terms of
information flow (GCA) or exposing the
underlying physical-causal mechanism
(DCM).

A limitation of standard GCA is that it
only models linear interactions. However,
the equivalence with transfer entropy for
Gaussian variables means that linear VAR
modeling is guaranteed to capture all the
relevant variance for Gaussian data, and
most of it for approximately Gaussian
data. Even substantially nonlinear inter-
actions that unfold over a small number of
observations can sometimes be approxi-
mated by a (linear) VAR model with a
large model order (Anderson, 1971). Care
should be taken if the degree of nonlinear-
ity differs across conditions in a study, as
this could confound GCA. Finally, the
conceptual framework of GCA can easily
be extended to incorporate more sophis-
ticated dynamical models. An attractive
opportunity is to analyze G-causality in
the framework of VARMA models, which
augment standard VAR models with a
moving average (MA) component. This
could be very useful since VARMA mod-
els behave sensibly under both downsam-
pling and additive noise (Solo, 2007). An

alternative approach is to place GCA in a
state-space framework by augmenting
standard VAR models with explicit obser-
vation equations. This may be valuable in
contexts like fMRI where detailed models
linking neural (state) dynamics to ob-
served (BOLD) responses are available
(Ryali et al., 2011).

Conclusions
GCA provides a powerful and generic statis-
tical tool for characterizing directed func-
tional interactions from time-series data,
that finds natural application in neurosci-
ence and neuroimaging. Used carefully, it
has the potential to shed distinctive light on
the functional circuits underlying percep-
tion, cognition, and behavior, in a variety
of experimental settings and using a range
of data acquisition methods. Used poorly,
like most statistical methods, it has the po-
tential to obscure rather than illuminate.
Care is needed not only in ensuring that
the data and analysis process respect the
necessary assumptions (mainly station-
arity), but also in interpretation. Most
importantly, G-causality does not make
direct claims about underlying physical-
causal mechanisms. Testing these claims
instead requires statistical models which
explicitly incorporate generative models
linking such mechanisms to observable
data, and which typically fall in the do-
main of effective connectivity. G-causality
is fundamentally about describing ob-
served data in terms of directed functional
interactions or information flow. For this
reason, some authors prefer terms like
“Granger prediction” which avoid men-
tion of “causality” (Cohen, 2014).

Although the principles governing the
application and interpretation of GCA are
not difficult to assimilate, they are not yet
part of a standard conceptual toolkit for
neuroscience. It may therefore be tempt-
ing to set GCA and its cousins aside, as
perhaps a passing fashion. In our view this
would be a mistake because neuroscience
is moving, inevitably if unevenly, toward
characterizing functional circuits. GCA,
rooted firmly in information theory and
calling on a mature approach to statistical
inference, will be increasingly useful as the
challenges of its application in specific
neuroscience settings are addressed. We
look forward to a scenario in which neu-
roscientists are readily able to select the
connectivity analysis method best suited
for their specific question, and for the data
they have at hand. Several freely available
software toolboxes can now facilitate the
application of G-causality (Cui et al., 2008;
Barnett and Seth, 2014). Of these, the
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MVGC toolbox (Barnett and Seth, 2014)
most closely reflects the principles outlined
in this article.

References
Anderson TW (1971) The statistical analysis of

time series. New York: Wiley.
Barnett L, Seth AK (2011) Behaviour of Granger

causality under filtering: theoretical invari-
ance and practical application. J Neurosci
Methods 201:404 – 419. CrossRef Medline

Barnett L, Seth AK (2014) The MVGC multivari-
ate Granger causality toolbox: a new approach to
Granger-causal inference. J Neurosci Methods
223:50–68. CrossRef Medline

Barnett L, Barrett AB, Seth AK (2009) Granger
causality and transfer entropy are equivalent
for Gaussian variables. Phys Rev Lett 103:
238701. CrossRef Medline

Bastos AM, Vezoli J, Bosman CA, Schoffelen JM,
Oostenveld R, Dowdall JR, De Weerd P, Ken-
nedy H, Fries P (2015) Visual areas exert
feedforward and feedback influences through
distinct frequency channels. Neuron 85:390 –
401. CrossRef Medline

Bernasconi C, König P (1999) On the directional-
ity of cortical interactions studied by structural
analysis of electrophysiological recordings. Biol
Cybern 81:199–210. CrossRef Medline

Bressler SL, Richter CG (2014) Interareal oscilla-
tory synchronization in top-down neocortical
processing. Curr Opin Neurobiol 31C:62–66.
CrossRef Medline

Brovelli A, Ding M, Ledberg A, Chen Y, Naka-
mura R, Bressler SL (2004) Beta oscillations
in a large-scale sensorimotor cortical network:
directional influences revealed by Granger
causality. Proc Natl Acad Sci U S A 101:9849 –
9854. CrossRef Medline

Cohen MX (2014) Analyzing neural time series
data. Cambridge, MA: MIT.

Cui J, Xu L, Bressler SL, Ding M, Liang H (2008)
BSMART: a Matlab/C toolbox for analysis of
multichannel neural time series. Neural Netwk
21:1094–1104. CrossRef

David O, Guillemain I, Saillet S, Reyt S, Deransart
C, Segebarth C, Depaulis A (2008) Identify-
ing neural drivers with functional MRI: an
electrophysiological validation. PLoS Biol
6:2683–2697. CrossRef Medline

Dhamala M, Rangarajan G, Ding M (2008) An-
alyzing information flow in brain networks
with nonparametric Granger causality. Neu-
roimage 41:354 –362. CrossRef Medline

Ding M, Bressler SL, Yang W, Liang H (2000)
Short-window spectral analysis of cortical event-
related potentials by adaptive multivariate
autoregressive modeling: data prepocessing,
model validation, and variability assessment.
Biol Cybern 83:35–45. CrossRef Medline

Feinberg DA, Setsompop K (2013) Ultra-fast
MRI of the human brain with simultaneous
multi-slice imaging. J Magn Reson 229:90 –
100. CrossRef Medline

Florin E, Gross J, Pfeifer J, Fink GR, Timmermann
L (2011) Reliability of multivariate causality
measures for neural data. J Neurosci Methods
198:344 –358. CrossRef Medline

Friston KJ, Harrison L, Penny W (2003) Dy-
namic causal modelling. Neuroimage 19:
1273–1302. CrossRef Medline

Friston K, Moran R, Seth AK (2013) Analysing
connectivity with Granger causality and dy-
namic causal modelling. Curr Opin Neuro-
biol 23:172–178. CrossRef Medline

Geweke J (1982) Measurement of linear depen-
dence and feedback between multiple time
series. J Am Statistical Assoc 77:304 –313.
CrossRef

Goebel R, Roebroeck A, Kim DS, Formisano E
(2003) Investigating directed cortical interac-
tions in time-resolved fMRI data using vector
autoregressive modeling and Granger causality
mapping. Magn Reson Imaging 21:1251–1261.
CrossRef Medline

Granger CWJ (1969) Investigating causal rela-
tions by econometric models and cross-
spectral methods. Econometrica 37:424 – 438.
CrossRef

Handwerker DA, Gonzalez-Castillo J, D’Esposito
M, Bandettini PA (2012) The continuing
challenge of understanding and modeling he-
modynamic variation in fMRI. Neuroimage
62:1017–1023. CrossRef Medline
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