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An emerging field of human brain imaging deals with the characterization of the connectome, a comprehensive
global description of structural and functional connectivity within the human brain. However, the question of
how functional and structural connectivity are related has not been fully answered yet. Here, we used different
methods to estimate the connectivity between each voxel of the cerebral cortex based on functional magnetic
resonance imaging (fMRI) and diffusion tensor imaging (DTI) data in order to obtain observer-independent func-
tional-structural connectomes of the human brain. Probabilistic fiber-tracking and a novel global fiber-tracking
technique were used to measure structural connectivity whereas for functional connectivity, full and partial cor-
relations between each voxel pair's fMRI-timecourses were calculated. For every voxel, two vectors consisting of
functional and structural connectivity estimates to all other voxels in the cortex were correlated with each other.
In this way, voxels structurally and functionally connected to similar regions within the rest of the brain could be
identified. Areas forming parts of the ‘default mode network’ (DMN) showed the highest agreement of structure—
function connectivity. Bilateral precuneal and inferior parietal regions were found using all applied techniques,
whereas the global tracking algorithm additionally revealed bilateral medial prefrontal cortices and early visual
areas. There were no significant differences between the results obtained from full and partial correlations. Our
data suggests that the DMN is the functional brain network, which uses the most direct structural connections.
Thus, the anatomical profile of the brain seems to shape its functional repertoire and the computation of the
whole-brain functional-structural connectome appears to be a valuable method to characterize global brain con-
nectivity within and between populations.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Koch et al. (Koch et al., 2002) were first to combine two MRI-
imaging techniques to directly study the interplay between structure

The analysis of structural and functional connectivity between dif-
ferent regions of the brain provides profound insights into its underly-
ing organization. Thus, both kinds of brain connectivity have been
extensively studied over the last years, leading to the concept of the
connectome, which was first defined for structural connectivity as a
‘comprehensive structural description of the network of elements
and connections forming the human brain’ (Sporns et al.,, 2005). Later,
the concept was extended to include functional connectivity, i.e. the
functional connectome (Biswal et al., 2010; Zuo et al., 2011). However,
only few studies have focused on the relationship between structural
and functional brain connectivity (for reviews see Bassett and Bullmore,
2009; Damoiseaux and Greicius, 2009; Honey et al., 2010; Rykhlevskaia
et al., 2008; Sporns, 2011).
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and function of the human brain. Using diffusion tensor imaging (DTI)
and resting-state functional magnetic resonance imaging (fMRI) they
provided evidence that fMRI signal correlations reflect the presence of
direct and indirect anatomical pathways. Findings from 23 pairs of
voxels each situated in two adjacent gyri on a single axial slice were re-
ported. All time courses from structurally connected voxels were also
correlated functionally. In some cases, however, functional connectivity
was also found in the absence of robust structural connectivity. Building
up on this initial point-to-point analysis, a study by (Greicius et al.,
2009) found structural connectivity between functionally connected
parts of the default mode network (DMN), a set of regions typically ac-
tive at rest (Buckner et al., 2008; Raichle et al., 2001; Shulman et al.,,
1997). The precuneus/retrosplenial cortex was found to be structurally
connected with bilateral medial temporal lobes (MTL) and the medial
prefrontal cortex (MPFC). Tracts starting from the medial prefrontal cor-
tex (MPFC) contacted the posterior cingulate cortex (PCC).

A similar study extended these qualitative findings to a quantitative
level (van den Heuvel et al., 2008). Partial correlations between the PCC
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and the MPFC (regressing out 15 other clusters within the DMN and
other resting-state networks) accounted for functional connectivity
strength, whereas mean fractional anisotropy values of the cingulum
were used as a measure for structural connectivity strength. The two
measures of connectivity strength correlated between subjects, which
suggests that a strong structural basis leads to strong functional cou-
plings between regions.

A limitation of region-to-region connectivity measurements, as
applied in the studies above, is that regions of interest must be manually
selected, possibly introducing selection bias (Damoiseaux and Greicius,
2009). To avoid this, data-driven approaches such as independent com-
ponent analysis (ICA) have become increasingly common, allowing for
the analysis of functional connectivity across the whole brain. A study
by (Segall et al., 2012) and colleagues simultaneously applied ICA on
functional time courses and gray matter density values (Xu et al.,
2009) to analyze the global structure-function relationship. High spatial
overlap between functional and structural ICA components was found.
However, in the ICA framework, the number of independent compo-
nents has to be defined typically a priori and the technique cannot be
applied easily to anatomical white-matter connectivity.

A different approach that allows for analyzing whole-brain connec-
tivity without a manual definition of regions of interest is to measure
connectivity between each pair of voxels within the gray matter. To
the best of our knowledge, only few studies have used such an approach
and only two have focused on the relationship between structure and
function in a voxel-wise (Skudlarski et al., 2008) or more coarsely
parcellated fashion (Honey et al., 2009).

In the study by Honey et al., the brain was initially divided into 66 re-
gions based on landmarks using FreeSurfer (Fischl et al., 2004). These
regions were then further subdivided into 998 areas of approximately
equal size. Functional connectivity was measured by correlating the
mean fMRI signals of each area. The number of fiber tracts connecting
regions was used as a measure or their structural connectivity strength.
It was found that both indices of connectivity strength correlated be-
tween regions. However, as shown in the studies by Koch et al. and
Greicius et al., functional connectivity was also found between regions
that were not directly connected by anatomical tracts. In the study by
Skudlarski and colleagues, the agreement between structure and func-
tion was analyzed in a voxel-wise fashion. Thereby, functional and
structural connectivity between each of 5000 downsampled isotropic
4 mm voxels within the gray matter was compared. Strongest correla-
tions between functional and structural connectivity were found in
highly connected regions such as the thalamus, precuneus and anterior
cingulate.

Based on the work by Skudlarski et al,, in the current study we esti-
mated structural and functional connectivity at high spatial resolution
between each pair of 40,000 voxels, defined by a group-template that
best represented the mean anatomy of all participants of the study.
For each voxel within the cortex, structural and functional connectivity
to all other voxels was estimated. Thus, connectivity vectors that
accounted for different connectivity estimates of a certain voxel to the
rest of the brain were established. In a second step, these were correlat-
ed to each other to identify voxels that were both structurally and func-
tionally connected to similar regions within the rest of the brain. In this
way, a parcellation-independent processing stream was established
that makes it possible to study the relationship of structure and function
within and between populations.

Furthermore, to study the impact of different methods on the results
and the robustness of the approach, we compared two functional and
two structural connectivity measures. Full and partial correlations
were estimated to assess functional connectivity, whereas probabilistic
and global fiber-tracking was performed to analyze structural connec-
tivity. In a comparison study of different network modeling techniques
(Smith et al,, 2011) and in direct comparison with structural equation
modeling (Marrelec et al., 2009), partial correlations performed well
in reconstructing networks based on time series data. Partial

correlations are commonly used to analyze direct relationships between
time signals, whereas full correlations are more prone to introduce indi-
rect connections into the model. To analyze the difference between a
method focusing on direct connectivity and one that largely introduces
indirect connectivity, we therefore compared estimates of partial and
full correlations of functional time series in this study. To estimate struc-
tural connectivity, we used a classical, probabilistic fiber-tracking meth-
od based on a diffusion tensor model (Kreher et al., 2008) and a novel,
global fiber-reconstruction technique that has been shown to perform
well in the reconstruction of crossing fibers (Reisert et al., 2011). The re-
sults for the different methods were strikingly similar, revealing most
parts of the default mode network, a functional network that consists
of the precuneus and adjacent posterior cingulate/retrosplenial cortex
(PCC/Rsp), the medial prefrontal cortex (MPFC) and inferior parietal
lobes/angular gyrus (IPL/AG) as well as the medial temporal lobe
(MTC). Thus, a voxel-wise comparison of structural and functional con-
nectivity appears useful to characterize the functional and anatomical
architecture of the human brain and seems to yield robust results
even when using different methods.

Materials and methods
Participants

Nineteen healthy subjects (6 females, 18 right-handed) between 21
and 31years of age (mean: 26.6, standard deviation: 2.98) participated
in the study. All measurements were obtained on a 3 Tesla whole-body
scanner (Trio, Siemens, Erlangen, Germany) using a birdcage radio-
frequency head coil. Subjects had no neurological or psychiatric history
and were not taking any psychoactive medication. The study was ap-
proved by the local ethics commiittee of the Charité, University Medicine
Berlin and written informed consent was obtained from all subjects
according to the Declaration of Helsinki.

Data acquisition

For anatomical segmentation and the construction of a group-
template, high-resolution anatomical images were obtained using
a standard magnetization-prepared rapid gradient-echo (MP-RAGE)
sequence (TR = 1900 ms, TE = 2.52 ms, isotropic voxel-size of
1x1x1mm>, 192 slices).

Functional images were acquired using a gradient-echo planar imag-
ing (EPI) sequence (TR =2010ms, TE = 30 ms, voxel-size 3 x 3 x 3mm>,
33 slices with a distance factor of 15% resulting in a slice gap of 0.45 mm
covering the whole brain). During functional scanning, participants
were asked to close their eyes. A total of 400 EPI volumes were acquired
in two consecutive runs of about 6 min each.

Diffusion-weighted images were obtained using a diffusion-sensitive
single-shot spin echo EPI sequence (TR = 10,000 ms, TE = 94 ms, voxel-
size of 2 x 2x 2mm?>, 69 slices). An effective b-value of 1000s/mm? was
used for each of the 61 diffusion encoding directions. In addition, 9 vol-
umes without diffusion weighting (b-value = 0s/mm?) equally distrib-
uted throughout the scan were acquired (b0O-images). For both the fMRI
and the diffusion weighted data, motion and distortion correction were
applied during image reconstruction by using a previously acquired ref-
erence scan (Zaitsev et al., 2004).

Voxel-wise connectivity assessment

To define a consistent anatomical gray matter mask for the whole
group, T1-weighted anatomical images were transformed into common
space using a diffeomorphic image registration algorithm (DARTEL)
as implemented in SPM8 (Ashburner, 2007; Friston et al., 2004). The
gray matter volume of this template was then downsampled to obtain
a total of approximately 40,000 gray matter voxels of 3.2 x 3.2 x
3.2 mm’. This voxel-wise approach parcellates the brain without
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implying anatomical pre-assumptions and preserves a high spatial res-
olution (Fig. 1). Thus, clustering of heterogeneously connected brain re-
gions can be omitted (Rubinov and Sporns, 2010).

All connectivity measures between each pair of voxels were calculat-
ed in each participant's native subject space. To do so, all voxels obtain-
ed from the gray matter mask of the group-template were projected
into both diffusion-imaging and functional single-subject spaces.

Analysis of functional images

Functional images were corrected for slice timing and rigid body
movements using SPM8. Functional time series were detrended and
two mean signals extracted from white matter and cerebral fluid
volumes, as well as rigid body motion parameters were regressed out
to minimize effects of physiological noise (Van Dijk et al, 2010;
Weissenbacher et al., 2009). Signals were bandpass-filtered using a
fast Fourier transformation based filter with cutoff values of 0.009 and
0.08 Hz. For each subject, approximately 40,000 (p) pre-processed
time series each comprising 400 data-points (n) were obtained. In a
first step, Pearson's correlation coefficients were calculated between
each pair of time signals, forming a weighted, undirected connectivity
matrix for each subject.

Since standard (marginal) correlations also capture indirect connec-
tivity between two time series (e.g. if both are correlated to another
time series), in a second step, functional connectivity was estimated
by calculating partial correlation coefficients between all 40,000 time-
series. In theory, partial correlations only describe direct connectivity
between signals of a network, i.e. suppress indirect connectivity
(Marrelec et al., 2006; Varoquaux and Craddock, 2013). Partial correla-
tions can be estimated either via linear regression of time series or by
estimating the inverse covariance matrix (also called the ‘precision ma-
trix’) of the whole set of time series. Off-diagonal entries in this matrix
can be used to calculate partial correlation coefficients directly. In a
study by Smith and colleagues (Smith et al., 2011), several connectivity
measures were compared and the approach that relied on estimating
the inverse covariance matrix yielded best results.

However, for n < p, such an inversion of the empirical covariance
matrix is an ill-posed problem, as the matrix is usually singular
(Banerjee et al., 2006). Using linear optimization (http://www.di.ens.
fr/~mschmidt/Software/), we therefore applied l,-regularization on
the diagonal of the matrix to make it positive definite and thus invert-
ible. Similar approaches have been used on fMRI-data (Huang et al.,
2010; Ryali et al., 2010; Varoquaux and Craddock, 2013; Varoquaux
etal,2010; Wee et al,, in press) and in other domains, e.g. to analyze ge-
netic datasets (Stifanelli et al., 2011; Witten and Tibshirani, 2009).

This procedure resulted in estimates of partial correlations between
all 40,000 time series, which were used as a second functional connec-
tivity measure. Thus, the two functional connectivity measures - full
correlations and the estimates of partial correlations based on the in-
verse covariance matrix - resulted in two connectivity matrices for
each subject. The entries x;; of the two matrices estimate the full and
partial correlation between the ith and jth fMRI timecourse. In the
following, correlation coefficients derived from empirical correlation
matrices will be referred to as ‘full correlations’, whereas the ones de-
rived from the estimate of the precision matrices will be referred to as
‘partial correlations’.

To prove the efficacy of the l,-regularization approach that was ap-
plied to estimate partial correlations, network sparsity between full
and partial correlation was compared, since partial correlation matrices
are expected to be sparse (Banerjee et al., 2006; Smith et al., 2011). Usu-
ally, network sparsity is defined by the portion of zero-entries in a con-
nectivity matrix. However, since in full correlations, no entries that are
exactly zero exist. Sparsity was measured by the portion of connections
that had absolute weights smaller than 1E-3 x standard deviation of all
absolute weights within the network.

Analysis of structural images

The local diffusion parameters were calculated using the DTI & Fiber
Tools for SPM (Kreher et al,, 2006). As a first estimate of structural
connectivity, probabilistic tracking starting from each voxel of the
anatomical group-template was performed. Anatomical T1-weighted
images were segmented and the resulting white matter volumes were
coregistered to the bO-images to define the probabilistic tracking
areas. These volumes were inflated by 5 mm to include gray matter
voxels, from which probabilistic tracking was started (Umarova et al.,
2010). A Monte Carlo simulation of a random walk algorithm similar
to the probabilistic index of connectivity (PICo) approach was used
(B. Kreher et al., 2008). Starting from each seed-voxel, the random
walk was performed 10° times, each propagating a trajectory within
the tracking area. Probability in the propagation of random walks within
a certain voxel was obtained by drawing the traversed direction ran-
domly from an orientation density function (ODF). The ODF was empir-
ically extracted from each voxel's diffusion tensor by applying an
exponent of q =4 to its eigenvalues (Fletcher et al., 2007; Koch et al.,
2002; B. Kreher et al., 2008).

Using this algorithm, we obtained a PICo map for every gray matter
voxel on the group-template. To estimate structural connectivity be-
tween a certain pair of voxels, the PICo-value at location of the second
voxel of the map that was calculated by seeding from the first and
vice versa were gathered and averaged. The result formed the weight
of connectivity between the pair of voxels, resulting in an undirected
structural connectivity matrix for each subject. Such a voxel-wise calcu-
lation of probabilistic connectivity is computationally expensive but
was possible by parallel processing over voxels on a high-performance
cluster (4x32xIntel® Xeon® CPU compute cluster with 128 GB RAM)
and feeding tracking results directly into the connectivity matrices.
Starting from each voxel, 100,000 random-walker trajectories were
propagated through the white matter of each subject. In total, this
resulted in 19 x 40,000 x 100,000 random-walks and an approximate
computational time of 11 weeks for the whole group of subjects on 12
cores of the cluster.

As a second method to estimate structural connectivity, the Gibbs'
tracking-approach (B.W. Kreher et al., 2008) supplied with the DTI &
Fiber Tools for SPM (Reisert et al., 2011) was used to reconstruct the
global fiber-dataset directly from the DTI volumes. Based on the raw
data of the acquired high-angular diffusion imaging (HARDI) data, a
piecewise approximation of neuronal pathways was achieved by an-
nealing small cylinders to chains that finally formed fiber-tracts. These
cylinders are simulated as moving particles, and their alignment to
chains is attained by slowly reducing the simulated temperature of
the system. In a Bayesian framework, a signal $* is simulated by a
spatially distributed sum of all cylinders and optimized iteratively
during cylinder annealing to best explain the measured MR-signal
S. The following parameters were chosen: Starting temperature:
0.1, stop temperature: 0.001, numbers of steps: 50, numbers of iter-
ations: 5x 108, The “dense” parameter default value was used to es-
timate comparable cylinder parameters for each subject. Global
tracking was performed on a tracking-mask that was obtained by
segmenting the anatomical volumes and coregistering them to the
b0-images.

A mean of 1.2 x 10° fibers was obtained for each subject. Fibers that
left the cortex through the spinal cord were excluded, because our pri-
mary interest concerned connectivity within the cerebral cortex. Since
global tracking was performed on a tracking mask that only included
the white matter volume, for the evaluation of connectivity, each gray
matter voxel was projected onto its closest fiber terminal if their dis-
tance did not exceed 3 mm. This was done to bridge the gap between
gray and white matter and to reduce a favoring of gray matter voxels
that resided close to the gray-white-matter interface (Zalesky and
Fornito, 2009). For each fiber terminal, all voxels within the distance
range of 3 voxels were connected with voxels within the same distance
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Fig. 1. Processing of functional time signals and structural data obtained from functional MRI and diffusion based imaging. Panel A: A group template as a best mean agreement between
the individual anatomical features is parcellated into 40,000 voxels. Panel B: Structural and functional connectivity is obtained by using diffusion-weighted and fMRI data. Probabilistic and
global tracking is performed between each point defined in panel A. Functional time courses are extracted from the same points, accordingly. Panel C: For each connectivity method, an
adjacency matrix is obtained for each subject, showing the connectivity between each pair of the 40,000 voxels. Panel D: Each voxel's connectivity to the rest of the brain is represented in a
1% 40,000 vector (i.e. one row or column extracted from the matrices in panel C). Agreement between vectors obtained from different methods within subjects can be combined by spa-
tially correlating vectors for each voxel and by mapping resulting values back to the group-template space (panel E). Results can then be transformed to standard MNI space by applying

the normalization transformation of the template to the resulting images.

range to the other end of the fiber, while connection weights were pe-
nalized linearly to distance.

In summary, two structural connectivity matrices were obtained
from the two structural connectivity methods for each subject (Fig. 1).
Entries x; in these matrices accounted for the number of random
walks (in probabilistic tracking matrices) or number of fibers (in global
tracking) that connected two voxels i and j.

Between-modality connectivity agreement

The global agreement of different connectivity analyses, i.e. the
agreement of functional and structural connectivity between all voxels,
was calculated by correlating two complete connectivity matrices. This
procedure resulted in a single R-value for each pair of connectivity
measures and each subject. Statistical significance was obtained by
Fisher-transforming the R-values obtained for each subject and calculat-
ing one-sample t-tests over the group.

Since nearby voxels are more likely to be connected both in func-
tional and structural connectivity measures (Skudlarski et al., 2008),
Euclidean distance of voxels was regressed out of the connectivity
vectors before correlating them to omit the introduction of false positive
correlations through the effect of distance. This was done by calculating
a ‘distance matrix’ from all voxel-coordinates, which could be used as an
additional variable in a partial correlation analysis. The same analysis
was performed without prior regression of Euclidean distance to show
the impact of this procedure on our results.

To be able to localize regions with high agreement in their structural
and functional connectivity, a spatial correlation analysis was per-
formed (see Fig. 1). The entries x;; of each of the four connectivity matri-
ces of a subject accounted for the subject-specific connectivity between
voxels i and j within the group template. Accordingly, the ith row of
each matrix had approximately 40,000 entries that mapped the connec-
tivity of voxel i to every other gray matter voxel. The structure-function
agreement of that voxel could be estimated by calculating the Pearson's
correlation coefficient between the ith row of a structural and a
functional matrix (Skudlarski et al., 2008). This resulted in one Pearson's

R-value for each voxel, when one row of a structural and a functional
connectivity matrix were compared. A high R-value implied that the
structural and functional connectivities of a certain voxel to the rest of
the brain were similar. In this way, areas with high similarity in their
global structural and functional connectivity could be identified
(Fig. 1). This analysis assessed the distribution of similarity between
connectivities across the brain.

To allow group statistics, intensity values of the spatial correla-
tion maps were Fisher-transformed to a Gaussian distribution and
z-transformed to a standard normal distribution. Spatially, images
were then smoothed with an isotropic Gaussian FWHM kernel of
8 mm. Finally, one-sample t-tests were performed across subjects
in a standard second-level SPM-analysis. Two-sample t-tests were
used to compute differences between the connectivity measures.
The main steps of the processing pipeline are summarized in Fig. 1.

Comparison with a default-mode network template

Comparison of the regions that were identified to show the highest
structure-function agreement were compared to a template of the
DMN obtained from a classical independent component analysis
experiment (Garrity et al., 2007) as provided with the GIFT toolbox
(http://mialab.mrn.org/software/gift/). Similarity was assessed by cor-
relating intensity values of all voxels of the images with the template
for each subject. High Pearson R-values imply that the resulting images
were similar to the DMN template.

Global tracking from the identified regions

To obtain a structural group-connectome based on global track-
ing results, estimated fiber-tracts of each subject were normalized
into MNI space and together formed a dataset that comprised 2.3
million fibers. The regions identified to show the highest similarity
in probabilistic tracking and full correlation analyses were used as
tracking seeds in this dataset. In this way, association fiber-tracts

(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.09.069

Please cite this article as: Horn, A, et al., The structural-functional connectome and the default mode network of the human brain, Neurolmage



http://mialab.mrn.org/software/gift/
image of Fig.�1
http://dx.doi.org/10.1016/j.neuroimage.2013.09.069

A. Horn et al. / Neurolmage xxx (2013) XXX—-xxx 5

that connect the identified regions to the rest of the brain could be
visualized.

Results
Overall matrix agreement

Mean matrix agreement between functional and structural whole-
brain connectivity matrices was assessed by calculating the Pearson's
correlation coefficient between two connectivity matrices. Following
the approach of (Skudlarski et al., 2008), this was done after removing
the effect of Euclidean distance, i.e. by calculating the partial correlation
coefficients between structural and functional connectivity matrices not
accounted for by the effect of Euclidean distance. However, to be able to
evaluate the impact of Euclidean distance regression, correlation values
with and without prior regression of Euclidean distance are reported in
Table 1.

R-values between probabilistic fiber-tracking and full correlation
matrices ranged from 0.02 to 0.08 (mean: 0.046, standard-deviation
0.018) in single subjects. When comparing global fiber-trackings and
full correlations of fMRI time signals, R-values ranged from 0.006 to
0.02 (mean: 0.017, standard-deviation: 0.010). Mean values of correla-
tions decreased to 0.024 (standard-deviation 0.029) between probabi-
listic tracking and partial correlations and 0.015 (standard-deviation
0.017) between global tracking and partial correlations. Matrix agree-
ment between all combinations of connectivity-measures was signifi-
cant on group-level (p <0.001). This shows that even in a voxel-wise
comparison of connectivity, overall structural and functional connectiv-
ity are dependent on each other. The comparably low R-values may be
explained by the high degree of sparsity of the structural matrices (see
also discussion and Skudlarski et al., 2008) and the high amount of
noise introduced by a voxel-wise comparison. As expected, within-
modality comparisons resulted in higher R-values. Matrix agreement
between the two functional connectivity matrices ranged between
R = 0.1 and 0.3 (mean: 0.15, standard-deviation: 0.060). Comparison
of probabilistic and global fiber-tracking yielded R-values between
0.03 and 0.18 (mean: 0.11, standard-deviation 0.064).

Since results from full and partial correlations were strikingly simi-
lar, matrix sparsities between the two measures were compared. Higher
network sparsity in partial correlation connectivity matrices would con-
firm the assumption that the average degree of connectivity in net-
works derived from partial correlations is lower than in networks
derived from full correlations (most likely because indirect connections
are suppressed, Marrelec et al., 2009). As expected, sparsity between full
and partial correlation matrices differed by two orders of magnitude in
each subject (mean: 0.0007 in full correlations and 0.075 in partial
correlations).

Spatial correlation of different connectivity measures

In a similar fashion, signatures of a voxel's structure-function connec-
tivity agreement were obtained by calculating the Pearson's correlation

Table 1

coefficient between its functional and structural connectivity to the rest
of the brain. A high R-value resulted for voxels that were connected
both structurally and functionally to a similar set of other voxels in the
brain. Peak correlations ranged from Pearson's R-values of 0.24 to 0.42
(mean: 0.31, standard-deviation 0.051) across subjects.

Both in single-subjects (see Fig. S1) and on a group level (see Figs. 2
and 4), agreement between functional and structural connectivity
values was highest and most robust in default mode regions of the
brain. The statistical group analysis of correlations between structural
connectivity estimates obtained from probabilistic tracking and func-
tional data did show strong correlations in bilateral precuneus and
adjacent posterior cingulate/retrosplenial cortex (PCC/Rsp), bilateral in-
ferior parietal lobe/angular gyrus (IPL/AG) and right supramarginal
gyrus (SMG). The correlations obtained from the global tracking meth-
od revealed additional correlations within the bilateral medial prefron-
tal cortices (MPFC). Early visual areas were also found to show high
structure-function agreement in data obtained from global trackings.
Fig. 2 summarizes group-results for these findings and Fig. 4
shows the unthresholded maps of mean correlations. In Table 2,
coordinates and t-values of peak voxels within the identified clus-
ters can be found. Differences between the two tracking methods
are shown in contrast images of paired t-test analyses (Fig. 3).
Here, the congruence between probabilistic tracking and function-
al data showed higher t-values for precuneal and parietal regions,
whereas the congruence between global tracking and functional
data revealed higher t-values in MPFC and visual cortices.

Overall, no substantial differences were found between full and
partial correlations of time signals in this analysis and group-
results from the spatial correlation analyses when performed with
and without prior regression of Euclidean distance were virtually
identical.

Spatial comparison of the identified regions with a template of the default-
mode network

Correlations of voxel-wise intensity values between the structure—
function agreement maps and a template of the DMN from a functional
ICA study (Garrity et al., 2007) was performed to obtain objective re-
sults about the spatial overlap between our results and the functionally
defined DMN. Mean R-values ranged between 0.28 and 0.38 and are
shown in Table 3 for each combination of connectivity measures. As
can be seen by this analysis, the combination of probabilistic fiber-
tracking and partial correlations showed regions that were most similar
to the ICA-based DMN template. Here, a slight benefit of the use of par-
tial correlations in comparison to full correlations may be seen, since re-
gardless of the tracking algorithm applied, partial correlations yielded
slightly higher R-values.

Tractography from identified regions

Global tractography from the identified regions that were found
to have a high agreement between their functional and structural

Connectivity agreement as measured by correlating whole connectivity matrices for different connectivity measures. Mean Pearson's R-values, as well as t- and p-values of a
one-sample t-test over the group are given for the analyses with and without prior regression of Euclidean distance.

Full matrix agreement with regression of

Euclidean distance

Full matrix agreement without regression of
Euclidean distance

Connectivity measures R (&£ sd) t p R (& sd) t p

Full correlations/probabilistic tracking 0.046 (40.018) 11.16 1.61E-09 0.037 (4+0.018) 8.89 5.31E-08
Full correlations/global tracking 0.017 (4+0.010) 7.54 5.64E-07 0.013 (40.005) 10.80 2.68E-09
Partial correlations/probabilistic tracking 0.024 (40.029) 8.56 9.30E-08 0.039 (4+0.016) 10.49 4.23E-09
Partial correlations/global tracking 0.015 (40.017) 8.98 4.52E-08 0.014 (40.005) 12.79 1.80E-10
Full and partial correlations 0.148 (40.060) 10.71 6.00E-07 0.164 (40.064) 11.02 1.95E-09
Probabilistic and global tracking 0.111 (40.064) 7.50 3.05E-09 0.119 (40.036) 14.40 2.54E-11

(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.09.069
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connectivity to the rest of the brain revealed their widespread antero-
posterior, medio-temporal and interhemispheric connectivity to other
brain regions and identified the involved pathways. Specifically, the cin-
gulum bundle promotes far-reaching antero-posterior connectivity
from the retrosplenial and precuneal cortices to the medial frontal
lobe and other, partly diffuse, frontal areas of the brain. Precuneal and
parietal regions seem to be connected via the inferior longitudinal fasci-
cle, which extends to the medial temporal lobe (MTL). Bihemispherical
communication is largely mediated via the corpus callosum. As in
(Greicius et al., 2009), we did not find direct anatomical connections be-
tween the MPFC and the MTL.

Discussion

The primary aim of this study was to introduce a method that makes
it possible to investigate the structural and functional connectivity
of the whole brain simultaneously. To achieve this, an observer-
independent processing stream was established that computes voxel-
to-voxel connectivity within the entire cerebral cortex. Two methods
to estimate functional, as well as structural connectivity were com-
pared. For all combinations of methods, areas of the default mode
network showed the highest structure-function agreement within
the whole brain, which is plausible with regard to recent literature
(Honey et al., 2007; Skudlarski et al., 2008).

Commonly, whole-brain connectivity is investigated between re-
gions that are based on a certain parcellation scheme (Bassett et al.,
2008; Gong et al., 2009; Liu et al., 2008; Salvador et al., 2005). However,
this might lead to selection bias, since the applied parcellations are typ-
ically based on preselected regions of interest (ROI) and do not account

8
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Table 2
Results from spatial correlations between different connectivity measures. Coordinates
and t-values refer to peak-voxels in significant clusters.

# in Fig. Region Peak coordinates t

Probabilistic tracking and full correlations

1 Bilateral Precuneus 6 —61 34 17.12
and PCC/Rsp

2 Left IPL/AG —36 —63 47 11.86

2 Right IPL/AG 45 —43 52 8.72

3 Right SMG 57 —28 25 1045

Probabilistic tracking and partial correlations

1 Bilateral Precuneus 6 —58 34 16.89
and PCC/Rsp

2 Left IPL/AG —54 —66 32 10.71

2 Right IPL/AG 45 —43 49 8.67

3 Right SMG 60 —28 25 1144

Global tracking and full correlations

1 Bilateral Precuneus 9 —52 31 9.52
and PCC/Rsp

2 Left IPL/AG -39 —46 43 10.71

2 Right IPL/AG 48 —46 28 797

4 Bilateral MPFC -3 62 -8 8.28

6 Occipital cortex —30 —100 4 10.63

Global tracking and partial correlations

1 Bilateral Precuneus 15 —64 32 8.72
and PCC/Rsp

2 Left IPL/AG —36 —45 49 833

2 Right IPL/AG 39 —40 46 9.04

4 Bilateral MPFC 0 68 0 6.61

5 Left IFG -30 50 7 6.95

6 Occipital cortex —-31 —100 8 8.79

t-score

t-score

Fig. 2. Group results of correlations between functional and structural connectivity measures. Voxel-wise comparisons between each voxel's functional and structural connectivity to the
rest of the brain were analyzed for each subject and analyzed in a t-test group analysis. Findings from spatial correlation analyses between one of the structural connectivity measures
(probabilistic global fiber-tracking) and one of the functional connectivity measures (full or partial correlations) are shown. Areas in this figure are thresholded at p<0.001 and corrected
for multiple comparisons on a cluster-level (FWE<0.05). 1: Precuneus and adjacent posterior cingulate/retrosplenial cortex (PCC/Rsp), 2. Bilateral Inferior parietal lobe/angular gyrus (IPL/
AG), 3. Right Supramarginal gyrus (SMG), 4. Bilateral Medial prefrontal gyrus (MPFC), 5. Left middle/inferior frontal gyrus, 6. Occipital pole.
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t-score

t-score

t-score

Fig. 3. Contrasts between results from Fig. 2 further show the effect of the different structural tracking methods and the similarity between functional methods. Differential contrast for
probabilistic > global tracking similarity with full and partial correlations show higher t-values in the middle temporal gyrus and precuneus. Global > probabilistic tracking similarity with
full and partial correlations show higher t-values in frontal areas. Areas in this figure are thresholded at p < 0.001 and corrected for multiple comparisons on the cluster-level
(FWE < 0.05). 1: Precuneus and adjacent posterior cingulate/retrosplenial cortex (PCC/Rsp), 2. Bilateral inferior parietal lobe/angular gyrus (IPL/AG), 3. Bilateral Medial prefrontal gyrus

(MPEC), 4. Occipital pole.

for inter-individual anatomical differences. This might be particularly
problematic for the simultaneous analysis of functional and structural
connectivity because ROI might not as a whole have a homogeneous
and corresponding functional and structural connectivity architecture.

In this study, the brain connectivity was compared based on a voxel-
wise estimation of structural and functional connectivity in a similar ap-
proach to (Skudlarski et al., 2008). To preserve even higher spatial res-
olution, the number of analyzed voxels was increased to 40,000, and
to ensure inter-subject comparability between connections, voxels
were defined on a group-template and projected into single-subject
spaces. This way, each subject’s individual anatomy was equally taken
into account and an observer-independent processing stream could be
established.

A challenge of voxel-wise structure-function comparisons lies in a
comparably high signal noise which would be averaged out if larger re-
gions were analyzed. Given that each matrix consisted of about 1.6 bil-
lion entries and, in the structural matrices, many of them contained
(near-) zero values (Skudlarski et al., 2008), comparably low Pearson's
R-values were found in a correlation analysis including the whole struc-
tural and functional connectivity matrices. In comparison to prior

Table 3

Intensity values in brain-maps showing regions with high cross-modal connectivity agree-
ment were correlated to intensity values in a template of the default mode network obtained
from a classical independent component analysis study (Garrity et al,, 2007). Mean correla-
tion strength of single-subject images with the template and their standard deviation are
displayed for the combinations between the two functional and structural methods applied.

Pearson's R (+ standard deviations) showing similarity to DMN template
Global fiber-tracking

0.2799 (+0.135)
0.2810 (+0.135)

Probabilistic fiber-tracking

03810 (+0.081)
03832 (+0.081)

Full correlations
Partial correlations

studies, R-values seem to decrease with the number of analyzed regions
from 0.66 for 66 regions and 0.36 for 998 regions in (Honey et al., 2009;
values were obtained as group-averages, leading to a second de-noising
effect) to 0.18 for 5000 regions in (Skudlarski et al., 2008) and a mean of
0.03 for 40,000 regions in our study.

We applied two structural and two functional methods to analyze
voxel-wise connectivity within the brain. The regions that showed the
highest similarity between structural and functional connectivity dif-
fered mainly between the two tractography algorithms, whereas the
functional methods yielded very similar results. The main difference be-
tween the structural methods was that probabilistic fiber-tracking did
not identify the MPFC as a significant region with high structure-func-
tion agreement, whereas the global tracking approach did (Figs. 2 and
3). On the unthresholded maps of mean correlation strength over the
group, however, the MPFC can be seen in analyses involving probabilis-
tic fiber-trackings, as well (Fig. 4). Within the DMN, the MPFC is
connected to precuneal and posterior cingulate regions via the cingu-
lum bundle (Greicius et al., 2009), a thin association tract that is charac-
terized by sharp changes in orientation. Partial volume effects caused by
its propagation within the cingulate cortex make it even more difficult
to reconstruct in tractography studies (Awate et al., 2007). A less robust
reconstruction of this fiber-tract by the probabilistic tracking algorithm
could explain the differences in our results.

It might seem more surprising, however, that partial correlations
yielded only slightly different results than full correlations. Most likely,
the sparsity of the structural connectivity matrices contributes to this ef-
fect, since voxels that are anatomically well connected are probably
equally well connected in full and partial correlations (Greicius et al.,
2009; Honey et al., 2009; Koch et al., 2002). To further analyze the sim-
ilarity of the findings between full and partial correlations, we com-
pared network sparsities of both connectivity matrices, which differed

(2013), http://dx.doi.org/10.1016/j.neuroimage.2013.09.069
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by two orders of magnitude in each subject. This suggests that the reg-
ularization approach used to estimate the partial correlation matrices
was effective, since partial correlation matrices seem to contain less in-
direct connections. It appears, however, that indirect connections as in-
troduced by full correlations do not drastically change the results of
structure-function-agreements, most-likely because of the high number
of overall connections, which might average out (false positive) indirect
connectivity estimates. This is important, since the computational
demand of the two techniques varies significantly. Still, one should
not underestimate the additional information that can be gained from
partial correlations, especially when analyzing sub-networks, e.g. in
ROI-based analyses.

The regions that were identified to show the highest agreement
in structural and functional connectivity were part of the default
mode network (DMN), a network that shows reduced activity during
tasks (Greicius and Menon, 2004) and elevated activity when subjects
are at rest (Raichle et al., 2001). Anatomically, the DMN consists of
the precuneus and adjacent posterior cingulate/retrosplenial cortex
(PCC/Rsp), the medial prefrontal cortex (MPFC) and the inferior parietal
lobe/angular gyrus (IPL/AG), as well as the lateral/medial temporal cor-
tex (LTC) (Buckner et al,, 2008). It has been shown that parts of the
DMN, namely the precuneus and posterior cingulate complex, might
represent a ‘structural core’ of the brain (Hagmann et al.,, 2008), since
they show the highest degree of connectivity in diffusion spectrum im-
aging based fiber-tracking. Default mode areas also seem to play the
most central role in graph-theoretical analyses of functional data ac-
quired at rest (Achard et al, 2006; Buckner et al, 2009; Zuo et al.,
2011). Tractography starting from default mode regions performed in
the present and previous studies (Greicius et al., 2009) revealed their
widespread antero-posterior connectivity to other regions within the
brain (Fig. 5). The cingulum bundle plays a central role in connecting
precuneus and MPFC. Cingular bundles have also been considered to
promote connectivity to parietal regions (Greicius et al., 2009), whereas
the inferior longitudinal fascicle is considered to connect the precuneus
to the temporal lobe (Buckner et al., 2008). Taken together, our findings
provide additional evidence that DMN regions form central and well-
connected areas within the brain. In congruence with the results of
(Skudlarski et al., 2008), our findings show that DMN regions also ex-
hibit the best agreement between their overall structural and functional
connectivity, which suggests that the DMN is the functional brain net-
work that uses the most direct anatomical connections.

In agreement with the above, results from studies that simulated
functional connectivity based on empirical structural connectivity
have led to the hypothesis that human neuroanatomy allows for certain
functional modes to be active over time (Deco et al,, 2011). It has been

shown that the DMN is synchronized more often and for a longer time
than other functional networks, which was explained by the high de-
gree of structural connectivity within DMN regions (Senden et al,
2012). Our findings may elaborate on this structure-function relation-
ship of the DMN in the following way: If functional connectivity of the
DMN does not only show a high overall degree of structural and func-
tional connectivity, but also the highest overlap between their connec-
tivity configurations, ie. if the DMN functionally uses more direct
anatomical connections than other resting state networks, it is plausible
that it is more likely to be active over time. In the absence of a task, i.e.
the absence of external driving sources that could modulate the func-
tional states of brain activity, functional dynamics seems to converge
in the most stable state that is fostered by brain anatomy (Honey
et al.,, 2010; Senden et al., 2012; Sporns et al., 2000). Our findings
support the hypothesis that the network that is active in such a
state is the default mode network. If brain anatomy has indeed
evolved in a way that naturally leads to self-referential thought
and internal mentation as a ‘default’ cognitive process, this would
cause a better exploitation of available cognitive resources. To
state this differently: When cognitive capacity is not used to solve
external problems, it might be most effectively (i.e. driven by
anatomy) used to evaluate and monitor the current internal state
(i.e. perform internal mentation, etc.).

Apart from regions within the DMN, statistical analysis showed sig-
nificant agreement between structural and functional connectivity in vi-
sual cortices using the global tracking approach. Only in the analysis
that combined global tracking and partial correlations, an additional
cluster within the left inferior frontal gyrus was identified. Besides, re-
gions within the cerebellum were found in statistical analyses to show
high structure-function agreement in all combinations of methods.
Apart from the latter, no regions that do not form part of the DMN
have been found consistently across different connectivity measures
and are thus not profoundly discussed. Findings in the visual cortices
and cerebellum could be interpreted to result from the high overall de-
gree of connectivity in these regions. On the unthresholded maps in
Fig. 4, regions that exhibit low structure-function agreement can also
be identified.

The clinical relevance of functional and structural connectivity can
be seen in many studies that analyzed connectivity in schizophrenic
populations (Calhoun et al,, 2011; Lynall et al., 2010; Skudlarski et al.,
2010; Venkataraman et al., 2012), the effects of aging (Zuo et al,
2011) or stroke (Nomura et al., 2010). However, structural and func-
tional connectivity are often studied independently of one another.
Since structural lesions have effects on the functional organization,
which due to brain plasticity again shapes structural connectivity

Fig. 4. Unthresholded maps of mean effect size from spatial correlation analyses for the different connectivity measures. Voxel-wise comparisons between each voxel's functional and
structural connectivity to the rest of the brain were analyzed for each subject and then averaged over the group of subjects. Note that Pearson's R-values were Fisher-transformed to a

gaussian distribution prior to averaging over subjects.
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Fig. 5. Influence of the identified regions as shown by their connectivity in
tractography. Regions that showed the highest structure-function agreement in be-
tween probabilistic trackings and full correlations are visualized as the solid regions
in yellow. Only fibers that connect to these regions are displayed and color-coded
for their traversing direction (xyz mapping to rgb). Fibers of the cingulum bundle
connect precuneal regions to the medial prefrontal cortex, inferior longitudinal fas-
cicle to the temporal lobes. Interhemispheric connectivity is mediated via the cor-
pus callosum.

(Alstott et al., 2009), brain connectivity could be analyzed more deliber-
ately, if structural and functional connectivity was taken into account si-
multaneously. The approach of this study allows for expressing a
signature of a voxel's whole brain functional and structural connectivity
as a single intensity value, which in analogy to methods such as voxel-
based morphometry (Ashburner and Friston, 2000) enables compari-
sons between populations. Once differences are detected, the underly-
ing connectivity matrices can be used to further classify them as
results from structural, functional, or mixed causes. In this way, popula-
tion differences could be detected and further analyzed using a voxel-
wise multimodal connectivity approach.

To summarize, in this study we calculated structural and functional
connectivity between each voxel within the gray matter of the brain
using four connectivity methods. We were able to show that the similar-
ity between functional and structural connectivity is highest in regions
of the default mode network. This observer-independent approach
may further be used to study the interplay between structure and func-
tion within and between populations.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.09.069.
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